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1 Introduction

For this project we are given the Fashion MNIST data to predict the class
label in the testing data [3]. The dataset we are working with contains 70,000
28x28 images of 10 different categories of clothing where 60,000 are placed in
the training dataset and the remaining 10,000 are used for the testing data. An
example of the dataset can be seen in Figure 1.

Figure 1: Sample of Fashion MNIST

To begin our analysis, we first performed exploratory data analysis to deter-
mine the class distribution of the training and testing datasets and found the
class distribution to be balanced. We also clustered the dataset using k-means
and found that the dataset was best clustered when using 10 clusters, matching
the number of classes in the dataset. From there, we pre-processed the data
using principal component analysis (PCA) and found that in order to explain
90 percent of the variance in the data, we need 137 principal components. To
classify the dataset using the 137 principal components, we trained a k-means
model, a light gradient boosting machine (LGBM), and a multi-class logistic
regression model. All models returned a testing accuracy of at least 0.85. Fi-
nally, we developed an ensemble model that combines outputs from several base
models as features in new datasets. We then used these datasets to train various
meta classifiers.
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2 Literature Review

The Fashion-MNIST dataset is popularly used for machine learning models. As
a result, many efforts exist to predict the class labels of the different clothing
items. Convolutional neural networks (CNN) are the current state of the art
for computer vision tasks. In [2], the authors focus on four different CNN ar-
chitectures and compare them to traditional non-convolutive machine learning
algorithms to see which ones perform better. CNNs take into account the spatial
information of the region (i.e. image) and detect shapes and edges of the region
to detect images. Since CNN’s tend to overfit, the authors chose to further im-
plement a dropout method which consists of temporarily removing neurons from
a neural network. Their implementation consisted of the following four models:
CNN with a dropout of 1, CNN with a dropout of 2, CNN with a dropout of
3, and simple CNN model with fewer layers. The CNN dropout of 3 had the
highest test accuracy at 99.1% and all 4 of the CNN models outperformed tradi-
tional non-convolutive machine learning algorithms [citation needed]. Through
our literature review, we also found this model to have the best accuracy on
this dataset.

Another common approach is to use CNNs as a feature extractor. These
features are then used to train another type of model. Usually CNNs are not
trained from scratch, but rather use a transfer learning framework. Transfer
learning involves training a model to perform a specific task but leveraging layers
trained on a different task. This second task often has has a large dataset so the
network can learn important features that are more general to the task. Cayir
et al. [4] use convolutional networks and transfer learning methodologies to
extract features from an image using a pre-trained convolutional network. They
use these features to fit classical machine learning methods, including SVM,
random forest and gradient boosting machines. They test this method using the
fashion MNIST dataset and find that CNN in combination with random forest
did the best (0.9084 test accuracy). It is not surprising that the first approach
outperformed this one. Because the first model was trained end to end, the
convolutional layers could learn specific features for the fashion MNIST dataset.
In the second approach, only the final classifiers were trained. Moreover, in the
first approach, the final prediction was based on some non-linear combination
of the features extracted from the convolutional layers. In the second approach,
these features were not combined, but rather flattened and fed into the final
classical models.

3 Exploratory Data Analysis

3.1 Summary Statistics

In order to begin our analysis, we had to first explore the dataset. The data
contained 10 labels ranging from 0 to 9 as the response variable. The training
data for each of the 10 labels contained 6,000 observations while the testing
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data labels contained 1,000 observations (Table 1).

Table 1: Train and Test Class Label Frequency

Class Label 0 1 2 3 4 5 6 7 8 9

Train 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000
Test 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

3.2 Unsupervised Learning

Unsupervised learning is a technique used to analyze and cluster unlabeled
datasets by looking for patterns. Clustering and dimensionality reduction are
examples of two types of algorithms that exist to help identify these hidden
patterns. When performing unsupervised learning algorithms, the goal is to
get insights from large volumes of new data rather than trying to predict the
outcome variable. Since our data contains a large number of image data, per-
forming unsupervised learning techniques will allow us to identify observations
that are similar and categorize them.

Variable clustering is a mathematical way to group similar variables together
into subsets or cluster groups to understand the data. We then choose the most
predictive variables of the cluster groups held by similar information. Since we
don’t choose every variable from each cluster, this is another way of reducing
the predictor variable pool and can be further used for feature selection tech-
niques. With clustering we are essentially splitting up the data into groups and
seeing how well the variables in a group relate to each other and how differ-
ent they are from the variables placed in the other clusters. When performing
clustering techniques, measuring the distance between points is important as
these distance metrics (i.e. Euclidean, Manhattan, Hamming, etc) determine
how points should be clustered by where they are in proximity to each other
while looking to minimize the distance within cluster groups and maximize the
distance between clusters.

3.2.1 K-Means Clustering

One of the most common clustering methods is k-means clustering. Once the
number of clusters is chosen, the algorithm randomly assigns each observation
to an initial cluster. For each of the clusters, the cluster mean vector is com-
puted and each observation gets assigned to the closest current cluster mean.
The algorithm keeps iterating until there are no more changes to the cluster
assignments.

To perform k-means clustering, we first, scaled each variable in the dataset
to have a mean of 0 and a standard deviation of 1 so all the variables have the
same unit. Since we don’t know the optimal number of clusters, we, then, tried
a range of 2-18 clusters and compared their with-in cluster sum of squares. We
saw that the sum of squares began leveling off around 10 and thus chose that
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Figure 2: K-Mean Clusters

Table 2: Dominating Label for Each
Cluster Group

Cluster Label

1 8
2 6
3 7
4 0
5 1
6 9
7 5
8 9
9 8
10 4

as our optimal number of clusters (Figure 2). Using 10 as our optimal k value,
we ran our k-means algorithm and found that the clusters do a pretty decent
job of separating the labels. Table 2 shows us that 8 of the 10 labels were the
most common label of their cluster. Only two labels, 8 and 9, were the most
common label for more than one cluster – both having two clusters where they
were the most common.

3.2.2 Principal Component Analysis (PCA)

PCA is a dimension reduction technique that derives a low-dimensional set
of features from a high-dimensional list of variables that still contain most of
the information. It uses a mathematical technique that transforms potentially
correlated variables into a smaller number of uncorrelated variables, principal
components. The first principal component captures the most variance in the
data through making linear combinations of the original variables that give the
most variance. Each principal component after accounts for as much of the
remaining variability as possible. The second principal component is the linear
combination of variables that takes into account the remaining variance as much
as they can and so on.

Centering and scaling variables to be on the same unit range is crucial for
PCA as well. This allows the variables to be comparable. However, scaling is
not always necessary and rather dependent on the context of the data. Variables
that are extremely disproportionate should be scaled to prevent some variables
from overpowering the PC loadings because of their larger scales. When vari-
ables are more similar, as with image pixels in our case, it is better to keep
the data unscaled so as to not lose signal information that variables with larger
variations contain.

Once we centered the data, we plotted the principal components against the
variances to see how influential each principal component is. Figure 3 shows
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Figure 3: PC Proportion of Vari-
ance Figure 4: PCA for 10 Labels

that the first two principal components provide the most influence. The first
principal component captures about 29% of the variance and the second princi-
pal component captures 18% of the variance. Figure 4 further depicts a visual
representation of the 10 class labels. There is visible separation between the
classes but also some overlap.

4 Multi-class Classification Model

After exploratory data analysis, we explored building classification models using
this data. The classification problem entails a training dataset of examples,
Dn : {xi, yi}ni=1 (n is number of samples), where each xi ∈ Rp and represents
the features (p number of features) and each yi ∈ {0, .., C − 1} is a class label,
where C is the number of classes. The goal is to find some function f that maps
the p-dimensional feature vectors to a class label:

f : Rp → {0, .., C}

Before training, we processed the data using PCA and kept enough components
to explain 90 percent of the variance in the dataset. This processing led to us
using 137 features (p=137) instead of the original 784 features.

4.1 Methods

We trained a K-nearest neighbor (KNN) model, a gradient boosting model
(LightGBM), and a multi-class logistic regression model to solve the classifi-
cation problem. In order to tune the hyperparameters of each model, we used a
grid search cross validation strategy using 5-fold cross validation. Grid search
allowed us to try different combinations of hyperparameters. After fitting each
model, we analyzed their performances and compared them to determine the
best model for the classification task. Here we present each model in more
detail.
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4.1.1 K-Nearest Neighbor (KNN)

KNN is a non-parametric supervised learning method used for classification and
regression tasks. In the classification setting, the output is a class membership.
An object is classified by a vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors. Formally, given a
dataset of training examples, our prediction (ŷo) on a new point xo, becomes:

ŷo = argmaxc∈C

∑
xi∈Nk(xo)

1{yi = c}

where xi ∈ Nk(xo) are the k nearest neighbors to the new point xo.
For example, if k = 1, then the object is simply assigned to the class of that

single nearest neighbor. Various metrics can be used to assess the closeness or
similarity between two point, such as Minkowski distance, Manhattan distance,
and Euclidean distance. Here we chose to use the Euclidean distance.

We tuned the number of neighbors using a 5-fold cross validation approach
and found that 7 neighbors gave the best results. We then used the testing data
to evaluate the model.

4.1.2 Gradient Boosting (LightGBM)

Like other boosting methods, gradient boosting combines weak learners into a
single strong learner in an iterative fashion. Using this method, we learn an
FT (x) such that:

FT (x) =

n∑
i=1

αtf(x; θt)

We fit this model by minimizing a loss function:

min{αt,θt}T
t=1

L(yi, FT (xi))

where L is chosen based on the problem. Since this problem is challenging to
solve over the entire parameter space, it is optimized in a stage wise fashion.
Here we choose LightGBM, a gradient boosting framework developed by Mi-
crosoft [1] to fit our gradient boosting machine. This framework uses trees as
a weak learner. There are several hyperparamters to tune in this model. We
chose to tune the number of learners and the maximum number of leaves for each
learner using 5-fold grid search cross validation. We found that 1000 learners
and 40 maximum number of leaves gave the best results.

4.1.3 Logistic Regression

Logistic regression is commonly used for binary classification tasks. In this case,
we take the output of a weighted sum of the features and transform that to a
probability distribution using the sigmoid function. Here, we extend this ap-
proach to the multi-class setting to model the following probability distribution:

p(yi = k|xi)∀K
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In order to approximate this probability distribution, we utilize the more general
softmax function. This function maps a Rp input to a Rp output, where the
output can be interpreted as a probability distribution (all positive values that
sum to 1). Each element of the output is calculated as follows:

softmax(zi) =
ezi∑K
j=1 e

zj

In the case of logistic regression, z is the output of the weighted sum of our fea-
tures. In order to fit this model, we calculate the current models prediction (ŷ)
and compare that to our training data labels using a cost function to optimize.
A common cost function is the negative log likelihood loss:

NLL(ŷ, y) = −
K∑

k=1

yklog(ŷk)

Combining this cost function with the softmax function, we get the final opti-
mization problem:

argmaxw −
K∑

k=1

yklog(softmax(wTx))

We can also add a regularization term to prevent overfitting:

argmaxw −
K∑

k=1

yklog(softmax(wTx)) + C||w||2

This optimization problem can be solved using gradient descent. Here we used
L2 regularization. C represents the strength of regularization. We tuned this
parameter using 5-fold cross validation and found C=0.9 to be the best choice
for this hyperparameter. We then used the testing data to evaluate the model.

4.2 Results

In order to evaluate our models, we determined the overall accuracy on the
testing dataset (Table 3). All of the models performed reasonably well (at least
0.85). Light GBM performed the best (0.9).

Table 3: Overall testing accuracy for each approach

KNN LightGBM Logistic Regression

Overall Accuracy 0.87 0.90 0.85

In order to evaluate the effectiveness of our model at classifying particular
types of clothing, we calculated the per class precision, recall, and f1-score
(Table 4). Class 6 (shirts) had the worst performance based on these metrics.
We also calculated the confusion matrix for each classifier (Figure 5). Based on
these matrices, we see that class 6 was often classified as class 0 (t-shirt), class
2 (pullover), or class 4 (coat) for all three classifiers.
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Figure 5: Confusion matrices for all methods

Table 4: Precision, recall, and f1-score for various techniques per class.

0 1 2 3 4 5 6 7 8 9

Precision - KNN 0.77 0.99 0.80 0.90 0.78 0.98 0.69 0.90 0.98 0.90
Recall - KNN 0.86 0.97 0.77 0.89 0.82 0.89 0.63 0.93 0.95 0.96
f1 - KNN 0.81 0.98 0.78 0.90 0.80 0.93 0.66 0.91 0.96 0.93

Precision - LightGBM 0.83 0.99 0.84 0.91 0.83 0.97 0.76 0.93 0.97 0.94
Recall - LightGBM 0.88 0.98 0.83 0.92 0.87 0.95 0.68 0.95 0.98 0.96
f1 - LightGBM 0.85 0.98 0.83 0.92 0.85 0.96 0.72 0.94 0.97 0.95

Precision - Logistic Regression 0.80 0.97 0.77 0.86 0.78 0.92 0.65 0.90 0.95 0.93
Recall - Logistic Regression 0.82 0.97 0.77 0.88 0.80 0.92 0.59 0.91 0.93 0.94
f1 - Logistic Regression 0.81 0.97 0.77 0.87 0.79 0.92 0.62 0.90 0.94 0.93

4.3 Discussion

We found reasonable success in classifying clothing with all three methods. KNN
worked well, perhaps due to some underlying latent space in the data. Logistic
regression was the worst performer, but has advantages in the explainability
of the results. All three models struggled with class 6 (shirts). However, it
becomes clear why the model struggled when looking at the labels of the classes
the models predicted. We find that class 6 was often confused with other types
of garments that could be seen as a shirt, such as class 0 (t-shirt), class 2
(pullover), and class 4 (coat).

5 Ensemble Model and Feature Engineering

5.1 Overview

The Ensemble Model we use is a technique known as Stacking. Stacking or
Stacked Generalization is an ensemble machine learning algorithm that uses a
meta-learning algorithm to learn how to best combine the predictions from two
or more base machine learning algorithms.

The benefit of stacking is that it can harness the capabilities of a range of
well-performing models on a classification or regression task and make predic-
tions that have better performance than any single model in the ensemble.

The final model in the stacking classifier can either take the probabilities or
predictions of the base model as input.
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Figure 6: Stacking classification pipeline

5.2 Ensemble Model

The base models that we selected for our ensemble model were the following:

• Logistic Regression - It makes no assumptions about distributions of classes
in feature space. It is efficient to train and provides a probabilistic inter-
pretation of the class values.

• Gradient Boosted Decision Trees - This model was the best performing
base model.

• Random Forest Model - This model uses bagging to get the best prediction.
It does not assume that the model has a linear relationship. It performs
feature subsampling and dataset subsampling reducing over-fitting.

• K Nearest Neighbors - This model is a discriminative model that classifies
points based on their distance from each other. Since none of our other
base models use this heuristic, we decided to add KNN as our final base
model.

• Multinomial Naive Bayes - This model is a generative model and thus,
tries to learn the joint distribution between x and y rather than finding
the difference between classes. We chose this as our final model since it
takes as input predictions from a discriminative model and models the
joint distribution of these predictions.

The base models were trained using the best hyperparameters selected from
the previous section and the predictions were then used as input to the final
model.
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One of the constraints that were specified is that the final model should have
no more than 20 features. This means that we could not concatenate the output
probabilities of each model since that would give us a 40-dimensional vector (4
models x 10 classes). We construct four datasets for the final model.

1. Dataset 1 - Pass in the average probability vector along with the individual
predictions for each of the models which gives us a 14 dimensional vector
(10 classes + 4 models).

2. Dataset 2 - Pass in the output probability vector of the best performing
base model (GBDT) along with the predictions of the 4 models. 14-
dimensional vector.

3. Dataset 3 - Use only the predictions of the 4 models. 4-dimensional input
vector.

4. Dataset 4 - Use predictions along with the first 16 PCA components.

For each dataset, we train a GBDT, SVM and KNN classifier as our meta
classifier and evaluate the performance of each model. We used Optuna for
hyperparameter tuning of the meta classifiers. Optuna uses a history record of
trials to determine which hyperparameter values to try next. Using this data, it
estimates a promising area and tries values in that area. Optuna then estimates
an even more promising region based on the new result. It repeats this process
using the history data of trials completed thus far. Specifically, it employs a
Bayesian optimization algorithm called Tree-structured Parzen Estimator. The
following parameters were tuned for each model -

• GBDT - number of trees, lambda for L2, number of leaves

• KNN - number of neighbors

• SVM - kernel (linear, poly or rbf), C (tolerance)

We do not tune any hyperparameters for the Multinomial naive bayes model.

5.3 Results

We report the final accuracy of the meta classifier on the different datasets.
Each model was tuned separately on each dataset. Each model was tuned for
50 trials (50 different combinations of hyperaparameters) and the model that
gave the best accuracy was selected.

Looking at the table (Table 5), we see that the best performance was ob-
tained using Multinomial NB classifier and Dataset 2. The performance of the
discriminative stacking classifier is still poorer than the base model which means
that the predictions of the different base models seem to be more or less the
same and there is no extra information being passed to the model. However, the
generative model performs well which means that the generative model is able
to learn a good joint distribution. Note that the performance on dataset 3 for
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Table 5: Ensemble model results

Model Dataset 1 Dataset 2 Dataset 3 Dataset 4
GBDT(light GBM) 0.8798 0.8737 0.8699 0.8699
SVM 0.8629 0.8634 0.8621 0.8766
KNN 0.8679 0.8743 0.8606 0.8785
Multinomial NB 0.8892 0.8919 0.2083 NaN

multinomial NB is extremely poor since we just have label information and not
the probabilities. Instead, we fit the multinomial NB models with just the pre-
diction probabilities of Dataset 1 and 2 since the predictions seem to be hurting
model performance. We found the performance to be boosted to 0.8939 and
0.8983 respectively. This means that using the predicted output probabilities
of the GBDT as input to the multinomial NB provides the richest information.
The multinomial NB could not be fitted with Dataset 4 as it cannot handle
negative feature values. (PCA input featuers).

We analyse the best accuracy a model can achieve (check if the true label is
predicted by any base model) on the train set: 100% and the test set: 93.78%
This means that the model can achieve a considerable boost over the base mod-
els. In addition, we compare the results by performing a voting classification.
Here, we simply perform a ’hard’ voting by selecting the majority prediction
of the different base models as the final prediction. Performing voting gave us
a test accuracy of 0.8878 and a train accuracy of 0.9722. We see that voting
outperforms the discriminative final models but not the generative model.
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